Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • ketos ketos
  • Project information
    • Project information
    • Activity
    • Labels
    • Planning hierarchy
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 27
    • Issues 27
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • public_projects
  • ketosketos
  • Merge requests
  • !204

Merged
Created May 29, 2021 by Oliver Kirsebom@kirsebomOwner

Methods in ResNet module for modifying momentum and dropout parameters

  • Overview 6
  • Commits 40
  • Pipelines 2
  • Changes 8

This merge requests adds a couple of useful methods to the resnet.py module:

  1. Method set_batch_norm_momentum in ResNetArch for modifying the momentum parameter of the batch normalization layers in the network.
  2. Method set_dropout_rate in ResNetArch for modifying the dropout rate parameter of the dropout layers in the network.
  3. Equivalent methods in ResNetBlock
  4. Possibility to specify the above parameters at initialization
  5. Added training=training in all calls to the dropout layers

The above changes have only been implemented for ResNet (2D). Same methods should be implemented for ResNet1D before merging this

Edited Jun 22, 2021 by Oliver Kirsebom
Assignee
Assign to
Reviewer
Request review from
Time tracking
Source branch: resnet_dropout_batch_norm