Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • ketos ketos
  • Project information
    • Project information
    • Activity
    • Labels
    • Planning hierarchy
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 27
    • Issues 27
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • public_projects
  • ketosketos
  • Issues
  • #136

Closed
Open
Created Nov 12, 2021 by Shaula Garibbo@SGaribbo

classifer.train_loop

I'm testing out DenseNet with the default recipe file (from ketos.neural_networks.densenet import default_densenet_recipe) and upon running classifier.train_loop(n_epochs=30, verbose=True), I get a very length error message (full version attached)error.txt ending in:

ValueError: Negative dimension size caused by subtracting 2 from 1 for '{{node dense_net_arch_1/sequential_5/transition_block_4/average_pooling2d_4/AvgPool}} = AvgPoolT=DT_FLOAT, data_format="NHWC", ksize=[1, 2, 2, 1], padding="VALID", strides=[1, 2, 2, 1]' with input shapes: [128,1,1500,128].

If I switch out the DenseNet default recipe file for the default ResNet recipe I don't get any error message and it starts running. Is there something I've overlooked? Thanks very much, Shaula :)

To upload designs, you'll need to enable LFS and have an admin enable hashed storage. More information
Assignee
Assign to
Time tracking